Both parallelism and orthogonality are used to perceive 3D slant of rectangles from 2D images.

نویسندگان

  • Jeffrey A Saunders
  • Benjamin T Backus
چکیده

A 2D perspective image of a slanted rectangular object is sufficient for a strong 3D percept. Two computational assumptions that could be used to interpret 3D from images of rectangles are as follows: (1) converging lines in an image are parallel in the world, and (2) skewed angles in an image are orthogonal in the world. For an accurate perspective image of a slanted rectangle, either constraint implies the same 3D interpretation. However, if an image is rescaled, the 3D interpretations based on parallelism and orthogonality generally conflict. We tested the roles of parallelism and orthogonality by measuring perceived depth within scaled perspective images. Stimuli were monocular images of squares, slanted about a horizontal axis, with an elliptical hole. Subjects judged the length-to-width ratio of the holes, which provided a measure of perceived depth along the object. The rotational alignment of squares within their surface plane was varied from 0 degrees (trapezoidal projected contours) to 20 degrees (skewed projected contours). In consistent-cue conditions, images were accurate projections of either a 10 degree- or 20 degree-wide square, with slants of 75 degrees and 62 degrees, respectively. In cue-conflict conditions, images were generated either by magnifying a 10 degrees image to have a projected size of 20 degrees or by minifying a 20 degree image to have a projected size of 10 degrees. For the aligned squares, which do not produce a conflicting skew cue, we found that subjects' judgments depended primarily on projected size and not on the size used to generate the prescaled images. This is consistent with reliance on the convergence cue, corresponding to a parallelism assumption. As squares were rotated away from alignment, producing skewed projected contours, judgments were increasingly determined by the original image size. This is consistent with use of the skew cue, corresponding to an orthogonality assumption. Our results demonstrate that both parallelism and orthogonality constraints are used to perceive depth from linear perspective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Obliqueness of Angles as a Cue to Planar Surface Slant Found in Extremely Simple Symmetrical Shapes

The Necker cube is a striking example for perceptual dominance of 3D over 2D. Object symmetry and obliqueness of angles are co-varying cues that may underlie the perceived slant of Necker cubes. To investigate the power of the oblique-angle cue, slants were judged of extremely simple symmetrical shapes. Slant computations based on an assumption of orthogonality were made for two abutting lines ...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

The accuracy and reliability of perceived depth from linear perspective as a function of image size.

We investigated the ability to use linear perspective to perceive depth from monocular images. Specifically, we focused on the information provided by convergence of parallel lines in an image due to perspective projection. Our stimuli were trapezoid-shaped projected contours, which appear as rectangles slanted in depth. If converging edges of a contour are assumed to be parallel edges of a 3D ...

متن کامل

A New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT

ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance.  In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2007